Graphing Equivalent Ratios and Rates

1. King crabs are one of the most sought-after shellfish in the ocean. Due to their large size and sweet taste, fisherman can earn $\$ 4$ for each pound of king crab caught.

The cost of $\$ 4$ per pound is a rate. Complete the table to find equivalent rates.

Weight (lb)	1	2	3	4	5	6
Amount Earned (\$)	4					

Next graph the data on the coordinate plane.
a. Make a coordinate plane. (You only need the first quadrant.) Since the amount earned depends on the weight, the x-axis should be the weight and the y-axis should be the amount earned. Be sure to title and label your graph clearly.
b. Plot the rates. The weight will be the x-coordinate and the amount earned will be the y coordinate. For example the coordinates for the $\$ 4$ per pound are $(1,4)$. Connect all the coordinates.
Finally, describe the pattern that you see.
2. Use the graph to find three equivalent ratios. Then identify the unit rate.
3. A satellite orbits Earth every 1.5 hours.
a. Create a table with 6 equivalent ratios.
b. Plot your points on a coordinate graph.
c. Jasmine determines that a satellite orbits Earth 15 times every 10 hours. What error did Jasmine make?
4. List 3 equivalent ratios from the graph. What is the unit rate?
5. Complete the table to find the missing ratios.

Teachers	1	3	7	\square
Students	18	54		180

